Sunday, April 26, 2015

THOR Math

THOR Math

na.p

ay.p,ax.p,az.p
Ky,Kx,Kz
PKy,PKx,PKz

Scalable.

Information to be sent to last node; RH SK RSK Ca


na.p {

E
 SK (Ma) = Ca


route "from" encryption;


 E
  RKz (null) = RHz

 E
  RKx (RHz RAz) =  RHx

 E
  RKy (RHx RAx) = RH


route "to" encryption;


 E
  Kz (RH SK RSK) = Hz

 E
  Kx (Hz Az) = Hx

 E
  Ky (Hx Ax) = Hy


}

Hy
C


Public Decryption route to;


       D
ay.p     PKy (Hy) = Hx Ax

       D
ax.p     PKx (Hx) = Hz Az

       D
az.p     PKz (Hz) = RH SK RSK



last node Recived; RH SK RSK



az.p {


D
 SK (Ca) = Ma


E
 RSK (Mb) = Cb

RH

}

RH
Cb


Public Decryption route from;


       D
Ray.p     RPKy (RH) = RHx RAx

       D
Rax.p     RPKx (RHx) = RHz RAz

       D
na.p      RPKz (RHz) = null


first node Recives; RHz Cb


na.p {


D
 RSK (Cb) = Mb

}


flow of info;

na.p, Hy Ca -> ay.p, Hx Ca -> ax.p, Hz Ca -> az.p


az.p, RH Cb -> Ray.p, RHx Cb -> Rax.p, RHz Cb -> na.p


headers are tied to ciphertext


SK = Symmetric key

RSK = return Symmetric key

C = ciphertext

K = private asymmetric key

PK = public asymmetric key

R = return

A = address

a = node

H = header

No comments:

Post a Comment